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Introduction
During the post-genomic era, proteomics has become an exciting 
field and a potential frontier of modern medicine since the early 
2000s.1–3 High-throughput technologies enabled quantitative pro-
teomics, revealing unprecedented new insights.4–6 For example, 
GAPDH, traditionally considered a housekeeping protein con-
sistently expressed in various tissues, was recently found linked 
to retinoblastoma, lung adenocarcinoma, and intrahepatic chol-

angiocarcinoma.4,5,7 These findings led to increasing clinical ap-
plications of high-throughput proteomics, although these clinical 
applications remain relatively limited. Therefore, we here sum-
marize recent advances in clinical applications of high-throughput 
proteomics and discuss the associated challenges, advantages, and 
future directions (Fig. 1).

The four most commonly used high-throughput proteomic tech-
niques are mass spectrometry (MS), protein pathway array (PPA), 
next-generation tissue microarrays (ngTMA), and multiplex bead- 
or aptamer-based assays such as Luminex® and Simoa® (Fig. 2).8 
They each have their own methodological strengths and weak-
nesses and should be used accordingly.8 Briefly, MS analyzes and 
quantifies proteins, their isoforms, and post-translational modi-
fications through direct assessment of the fragments or specific 
proteolytic activities. Based on instrumental analysis methods, 
MS can be roughly classified into direct infusion MS, ion mobil-
ity system (IMS) MS, liquid chromatography-mass spectrometry 
(LC-MS), gas chromatography MS, and supercritical fluid chro-
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matography MS.9,10 IMS MS is gaining popularity for its smaller 
chemical variations and higher speed than LC-MS.9 The direct in-
fusion shotgun proteome analysis combines shotgun and IMS MS 
methodologies and appears to be a highly efficient and accurate 
approach for high-throughput proteomics.9,11 Isobaric tags for rela-
tive and absolute quantitation (iTRAQ) is another commonly used 
MS-based technique, covalently labeling the side-chain amines 
and/or N-terminus of targeted peptides.12 It has been applied to 
discovering biomarkers of hepatocellular carcinoma and cervical 
cancer.13,14 However, iTRAQ has its disadvantages, including iso-
topic use, contamination, and background noises, despite its very 
high accuracy (orders of magnitude).15

PPA uses a mixture of antibodies in a gel-based array to simulta-
neously detect corresponding antigens in a sample, making it high-
throughput. ngTMA applies antibodies to a large number of tissue 
samples/cores simultaneously, usually formalin-fixed paraffin-em-
bedded and arranged in an array on a single histologic slide. This 
allows large-scale antibody-based molecular analysis of multiple 
samples at the same time, improving time- and cost-efficiency and 
decreasing variations and the need for additional controls. Multi-
plex bead- or aptamer-based assays mix the samples with multiple 
beads or aptamers that simultaneously bind to various antigens in 
the samples through conjugated antibodies, aptamers, or probes. 
Most of these systems use fluorescent-based conjugation and de-
tection systems. Finally, these technologies each have their unique 
strengths and weaknesses. For example, the acceptable sample 

types vary by methodology. MS and PPA are mostly for processed 
proteins, while ngTMA and bead/aptamer-based assays require hu-
man tissue and blood samples, respectively. More methodological 
details can be found in other reviews.8

Advances in the clinical applications of proteomics
High-throughput proteomics methods have broad applications in 
translational research, clinical practice, and public health. They 
enable the exploration of molecular mechanisms and biological 
processes, the identification of novel diagnostic and prognostic 
biomarkers for precision medicine, and the discovery of therapeu-
tic targets for personalized therapy.16 Given the rapidly expanding 
high-throughput datasets,17 high-throughput proteomics becomes 
increasingly important for translational and clinical research. It 
has been widely used in cancer research and other fields.18–20 Sev-
eral elegant reviews have focused on one or two disease areas and 
should be referred to for more details.19,21–26 Here, we briefly sum-
marize recent advances in the clinical application of high-through-
put proteomics in selected diseases.

Breast cancer
Song et al.27 performed both PPA and SmartChip, which is an 
mRNA microarray, and identified 1,243 cancer pathway-related 
genes in breast cancer. They revealed decreased protein and mRNA 
expression in CDK6, Vimentin, and SLUG, and different protein 

Fig. 2. Commonly used proteomics platforms. Bead-based array system includes commercially available Luminex and Meso-scale Discovery (MSD®) assays, 
while the mainstream aptamer-based proteomic system is SOMAscan® assay.

Fig. 1. The challenges and advantages of high-throughput proteomics. The figure was generated using a template of Slidesgo (https://slidesgo.com/).
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expression in BCL6, CCNE1, PCNA, PDK1, SRC, and XIAP be-
tween tumor and normal tissues, but no difference in mRNA ex-
pression in those genes. At the signaling network level, 15 altered 
pathways were identified in breast cancer. Among them, the p53, 
IL17, HGF, NGF, PTEN, and PI3K/AKT pathways, accounting 
for 6 pathways, were found to be shared between the mRNAs and 
proteins. Although many dysregulated pathways in breast cancer 
occur at both mRNA and protein levels, mRNA expression does 
not necessarily correlate with protein expression. It thus suggests 
different regulatory mechanisms for proteins and mRNAs in breast 
cancer pathogenesis.27 Hadi et al.28 used gas chromatography-
mass spectrometry to identify potential protein markers for breast 
cancer. A partial least square discriminant analysis model was built 
to separate breast cancer patients, achieving a sensitivity of 96% 
and a specificity of 100% on the validation dataset. Models using 
the decision tree algorithm for grading, staging, and neoadjuvant 
status reached predictive accuracies of 71.5%, 71.3%, and 79.8%, 
respectively.28 Interestingly, Aslebagh et al.29 assessed protein 
expression patterns in human milk obtained from breastfeeding 
mothers who had breast cancer using 2D-polyacrylamide gel elec-
trophoresis coupled with nano LC-MS/MS analysis. It showed that 
breast milk could be an essential and potentially informative bio-
specimen for breast cancer biomarker discovery.29

Colorectal cancer
Barberini et al.30 applied gas chromatography-mass spectrometry 
to identify biomarkers in blood plasma for colorectal cancer and 
found the most significantly altered metabolic pathways in colo-
rectal cancer involve monosaccharides, such as the catabolic path-
way of fructose and D-mannose, and amino acids, such as me-
thionine, valine, leucine, and isoleucine. Ang et al.31 described a 
detailed protocol for revealing candidate protein markers in stool 
samples using 1D sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis with LC-MS/MS. Their protein quantitation pro-
tocol and validation study will enhance the fecal proteome for 
the detection of potential fecal biomarkers. Additionally, using a 
high-density antibody microarray, Rho et al.32 showed that plasma 
levels of several proteins/glycoproteins were associated with co-
lon cancer diagnosis, including BAG4, IL6ST, and CD44. Adding 
CD44, EGFR, sialyl Lewis-A, and Lewis-X content further im-
proved the panel’s performance to an area under the curve (AUC) 
of 0.86 to 0.90.

Gastric cancer
In gastric cancer, Gao et al.33 discovered that VCAM1, FLNA, 
VASP, CAV1, PICK1, and COL4A2 were differentially expressed 
using isobaric tags for relative and absolute quantitation (ITRAQ) 
labeling analysis with LC-MS. They identified VCAM1 as a po-
tential biomarker for treatment, located at the center of the protein-
protein interaction network by KEGG pathway analysis. Lian et 
al.34 identified 20 proteins that were differentially expressed in Hel-
icobacter pylori-associated gastric cancer using PPA. They found 
that both brassinosteroid-insensitive 1-associated kinase 1 and cal-
pastatin were favorable prognostic factors in H. pylori-associated 
gastric cancers. The ERK/MAPK signaling pathway was the most 
significantly affected by H. pylori using PPA and ingenuity path-
way analysis. He et al.35 applied PPA to AFP-producing gastric ad-
enocarcinoma, which is more aggressive and associated with liver 
metastasis, uncovering that cyclin D1, RANKL, LSD1, Autotaxin, 
Calpain2, stat3, XIAP, IGF-Irβ, and Bcl-2 were up-regulated, and 
ASC-R and BID were down-regulated with significant differences. 
Furthermore, high levels of XIAP and IGF-Irβ were independent 

prognostic factors. These factors can also be used to build a risk 
model with the pathological stage to separate AFP-positive gastric 
adenocarcinoma into two subgroups. The protein kinase A path-
way was involved in the high-risk score group, while the PTEN 
pathway had significant enrichment in the low-risk score group by 
gene set enrichment analysis.35 Tong et al.36 uncovered nine serum 
markers using the Luminex system for the diagnosis of gastric can-
cer. Among them, pepsinogen I, pepsinogen II, ADAM8, VEGF, 
and Anti-H pylori IgG were identified as the panel of classifiers in 
the three algorithms, including logistic regression, random forest, 
and support vector machine, with accuracy in the validation set of 
78.7%, 82.5%, and 86.1%, respectively.36

Bladder cancer
Proteomics has provided unique insights into the diagnostics, ther-
apeutic targets, and pathogenesis of bladder cancer.37 Chen et al.38 
applied differential 12C2-/13C2-dansylation labeling coupled with 
liquid chromatography/tandem MS to evaluate metabolite-based 
diagnostic biomarkers in urine for bladder cancer. They used ultra-
performance liquid chromatography coupled with a high-resolution 
Fourier transform ion-cyclotron resonance MS system and an ion 
trap MS with multiple reactions for precise quantification. Among 
o-phosphoethanolamine, 3-amino-2-piperidone, uridine, and 5-hy-
droxyindoleacetic acid, o-phosphoethanolamine and uridine were 
differentially expressed in the urine of bladder cancer patients 
compared with controls. Furthermore, o-phosphoethanolamine 
was the most promising biomarker among the four, with an AUC 
of 0.709 for bladder cancer diagnosis. The AUC improved to 0.726 
with the combination of o-phosphoethanolamine and uridine.38 Hu 
et al.39 demonstrated that 45 proteins were differentially expressed 
in bladder cancers compared with non-tumor samples. Among 
them, EGFR and cdc2p34 were associated with muscle invasion 
and higher histological grade. Moreover, ß-catenin, HSP70, auto-
taxin, Notch4, PSTPIP1, DPYD, ODC, cyclinB1, calretinin, and 
EPO can be employed as a classifier panel to classify muscle-in-
vasive bladder urothelial carcinoma by prognosis. P2X7, cdc25B, 
and TFIIH p89 were identified as significant prognostic factors by 
Kaplan–Meier and log-rank analyses on overall survival.39 Recent 
studies also identified 14 differentially expressed plasma proteins 
in cancer versus control groups, with apolipoprotein A1 being the 
most promising candidate (AUC = 0.906) and showed that Cad-
herin 12 is a predictor of neoadjuvant chemotherapy outcomes.40,41

Laryngeal squamous cell carcinoma
Sewell et al.42 first identified stratifin, S100 calcium-binding pro-
tein A9, p21-ARC, stathmin, and enolase as proteomic markers 
for laryngeal squamous cell carcinoma. Chen et al.43 discovered 
16 proteins differentially expressed in laryngeal squamous cell 
carcinoma. Among them, TTF-1, CDK2, Eg5, PCNA, Bcl-xL, 14-
3-3b, p27, SRC-1, and cytokeratin 18 were identified as markers 
for classification, and JAK2, keratin 10, and IL-3Ra were iden-
tified for prognosis. They also developed a risk model based on 
histological grade, T classification, N classification, JAK2, and 
IL-3Ra, which can predict the prognosis with 85.5% accuracy.43 
Pan et al.44 developed a four-autoantibody-based early diagnostic 
panel, including TP53, HRAS, CTAG1A, and NSG1, for esopha-
geal squamous cell carcinoma using the Luminex xMAP platform. 
The panel can discriminate early esophageal squamous cell carci-
nomas from controls with a sensitivity of 58.0% and specificity of 
90.0% in an external validation dataset.44 Using LC-MS, Zhao et 
al.45 recently revealed that the fatty acid desaturase 1 expression 
was linked to poor prognosis and advanced clinical features in re-
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current laryngeal squamous cell carcinoma patients treated with 
chemotherapy. They identified that fatty acid desaturase 1 is a po-
tential promoter in laryngeal squamous cell carcinoma progression 
through the AKT/mTOR signaling pathway by protein-protein in-
teractions (PPIs) and module analysis.

Coronavirus disease 2019 (COVID-19)
High-throughput proteomics is a technology that can be rapidly 
applied, as demonstrated by its use in studying COVID-19. De-
spite the progress made in combating COVID-19,46,47 diagnostics 
and prognostication of COVID-19 and long COVID-19 remain 
challenging in the post-vaccination period.48,49 Ray et al.50 illus-
trated that proteomics techniques, including MS, antibody-based 
assays, and bioinformatics had tremendous potential to uncover 
the severe-acute-respiratory-syndrome-related coronavirus-2 
(SARSr-CoV-2) pathobiology and inform therapeutics and vac-
cine development. LC-MS has helped identify the host cell path-
ways modulated by SARS-CoV-2 virus.51 Hierarchical clustering 
analysis identified two main clusters of proteins: one consisting of 
proteins involved in cholesterol metabolism, which were reduced 
during infection, and another of proteins that were increased by 
infection. They showed that inhibition of these pathways can stop 
viral replication in vitro and thus can be targets for COVID-19 
prevention and treatment.51 Forster et al. successfully used phylo-
genetic networks to identify undocumented COVID-19 infection 
sources. Their team found three central variants marked by dif-
ferent amino acid profiles, named A, B, and C types. The A and C 
types are mostly found in Europeans and Americans, while the B 
type is more prevalent in East Asia.52,53 Interestingly, the ancestral 
genome of type B seems to have mutated into derived B types be-
fore being transmitted beyond East Asia.52,53

Challenges

Protein property
Degradation has always been the biggest challenge in proteomics, 
compared to the considerable stability of DNA and cDNA. Protein 
stability and half-life are modulated by multiple post-translational 
modifications (PTMs), which regulate various signaling pathways 
and modify proteins with functional chemical groups, including 
phosphate, glycan, methyl, acetyl, ubiquitin, and others.54 Al-
though these modifications are significant for protein functions 
such as activity state, stability, localization, turnover, and inter-
actions with other molecules, they are susceptible to degradation. 
This degradation can occur during protein extraction, sample col-
lection, and temperature changes.55 Missing PTM detection can 
lead to misinterpreted results and errors in data analysis. For ex-
ample, the degradation of phosphorylation can mislead the activity 
status of proteins and dynamic protein-protein interactions. Loss of 
PTMs can also significantly change the original multi-dimensional 
structure of proteins. Low protein concentration and non-specific 
bindings are additional challenges for immunoassay-based tech-
niques.

Statistical modeling
The missing or inappropriate normalization of data will lead to in-
accurate or misleading statistical analysis, despite the use of proper 
statistical methods.56–58 For example, although housekeeping pro-
teins such as GAPDH and beta-actin are known for their consistent 
expression across biological sources, it is sometimes inaccurate if 
there are systematic errors or intrinsic linkages to a disease.4,5,7 

These errors may affect protein detection in certain areas or types 
of protein. Using additional housekeeping proteins can help iden-
tify these errors and serve as internal controls.

Statistical modeling algorithms may also be affected by input 
data and selected features/factors (e.g., quality of samples and 
biomarker selection). For example, the clustering results can be 
greatly influenced by changes in samples and available features.8 
In such scenarios, unsupervised machine learning (ML) may be 
particularly useful since it does not rely on the labels/annotations 
provided by experts but is driven by the intrinsic relationships 
of the samples.59,60 However, the performance of unsupervised 
ML may be worse than supervised ML and thus should be com-
pared with that of supervised ML.61 Sample selection, variables, 
and study goals need to be clarified beforehand to achieve a more 
meaningful result.

The same statistical method can be performed using various for-
mulas, which focus on different principles or data types and gener-
ate different results. For example, clustering analysis can generate 
different heat maps using different distances as units, such as Eu-
clidean distance, Manhattan distance, Pearson correlation, mini-
mum distance, and maximum distance. Even for the same dataset, 
different ML models can achieve varying classification accuracy 
and performance.8,62,63 Moreover, there is no best or standardized 
statistical algorithm to fit all data types, especially unknown data. 
Therefore, an optimized statistical model should not only be based 
on the data itself to seek the most reasonable formula but also on 
clinical significance and dataset characteristics. This is probably 
the biggest challenge during data analysis. Therefore, model opti-
mization and comparison should also be performed to ensure that 
the best-fit model is identified and used while minimizing the risk 
of overfitting.6,64–66

Data deposition, integration and harmonization
Research and clinical communities are integrating and standard-
izing data from different studies and sources for a bigger picture 
of the signaling network and greater statistical power. However, 
several challenges remain in collecting and merging datasets cur-
rently.67 (1) The two major omics data depositories, which include 
proteomic data, are the Gene Expression Omnibus hosted by 
the National Library of Medicine, National Institutes of Health, 
Bethesda, MD, USA, and the ArrayExpress by the European Mo-
lecular Biology Laboratory, European Bioinformatics Institute, 
Hinxton, Cambridgeshire, UK.68 However, there are limited pub-
licly available resources for acquiring proteomics and genomics 
data, which makes assessing signaling network changes among the 
DNA, mRNA, and protein levels difficult in a target disease due 
to limited overlapping molecules. Indeed, 33.8% of the datasets in 
the ProteomeXchange consortium were unreleased.69 These two 
omics data depositories also focus on genomic and transcriptomic 
data. While the PRoteomics IDEntifications (PRIDE) database, 
part of the ProteomeXchange consortium, has more proteomic 
data,70 how to incorporate the 3 omics data types remains chal-
lenging. (2) Particularly with clinical samples, protecting patient 
identity is becoming and should have become a priority for data-
base repositories.69,71,72 It is legally and ethically challenging to 
balance excessive administrative burdens with sufficient patient 
protection. (3) Sample preparations in different research or clini-
cal settings will increase system errors and noises in multi-omics 
analysis. Therefore, it is essential to use a standardized protocol, 
common data standards, and annotation guidelines during the ex-
periment and computational processing to simplify and acquire 
qualified data for further data sharing, merging, integration, and 
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mining. Efforts have been focused on standardized submission and 
data protocols.67,68,73,74 (4) Nearly all proteomic data repositories 
are designed to accept MS-based data, while non-MS-based data 
such as that from ngTMA and multi-bead-based technology are 
currently incompatible.69 This has become a future direction for 
the ProteomeXchange consortium.

Clinical validation and considerations
Approximately 3,000 genomic and proteomic biomarkers are cur-
rently used in clinical trials involving more than 2,000 diseases.75 
However, a significant bottleneck in developing useful and mar-
ketable proteomics-based assays is the step of moving into clini-
cal validation, with or without a clinical trial.22,76 Any qualified 
clinical validation study should have not only high sensitivity 
and specificity but also high precision and high accuracy.77 These 
characteristics are affected by specimen collection, storage, and 
processing, which are often not assessed in the scientific research 
phase. Developing clinical tests, including multi-step procedures 
that must also be easy to perform with good reproducibility, can 
be difficult.22 Besides, a complex clinical environment is usually 
not conducive to high-throughput assays. Cross-contamination is 
still common and difficult to completely remove/prevent, even 
for procedures performed in different areas such as the clean area 
(pre-test room), reaction area (test room), and contaminated area 
(post-test room).78

Furthermore, real-world clinical settings are more complex 
than research settings. Patients’ existing treatments and comorbidi-
ties are major barriers between real-world and research settings. 
They may interfere with or confound the expected clinical useful-
ness of proteomic markers and thus decrease the generalizability 
of research studies.78 MS might be highly specific, but clinical 
laboratories may need higher sensitivity from an (immune) assay 
platform.79 Indeed, it is relatively straightforward to incorporate 
a particular protein variant into a clinical setting as a screening 
marker that is sensitive but less specific for a disease or diagnosis. 
Moreover, other reasons may also significantly delay the clinical 
application of proteomics, including researchers’ lack of under-
standing of clinical validation requirements, long development 
turnaround times, the lack of ready-to-use quality control and cali-
brators, and the lack of necessary paperwork and regular mainte-
nance. A sufficient number of both positive and negative samples 
for clinical validation is a unique but not uncommon challenge for 
small laboratories.

How to meet these challenges
Technological advances, stringent data validation, model optimi-
zation, and rigorous validation processes are key to successfully 
meeting these challenges in clinical proteomics.20,80 PTM, as part 
of the challenging protein property, can be effectively monitored 
using advanced MS technologies, such as iTRAQ, multiplexed 
proteome dynamics profiling, and data-independent acquisition 
(DIA) MS.81–83

Several considerations are noteworthy for improving the sta-
tistical modeling of high-throughput clinical proteomics.20 First, 
rigorous and high-performance statistical modeling relies on ro-
bust data validation and quality control processes, which must be 
ensured through document control and implementation. Second, 
all ML modeling must be compared with conventional or exist-
ing modeling and undergo an optimization (tuning) process for the 
best performance. Third, an external dataset should be used as the 
independent test set so that the generalizability of the final (cho-
sen) model can be reliably and independently tested.

Finally, although proteomics-based clinical trials lag behind 
other diagnostic modalities (e.g., genomics), plasma proteomic 
and metabolomic data may greatly help guide precision oncol-
ogy.19,20,84–86 When developing clinical proteomic tests, attention 
should be directed to each of the pre-analytics, method develop-
ment, performance evaluation, and implementation steps.85 Sev-
eral groups called for standardization and stringent quality con-
trol processes for the clinical use of proteomic biomarkers.19,20,85 
Education and training of laboratory staff are also important for 
the robust validation and implementation of clinical proteomics.85

Advantages

Global networks
Understanding cell signaling networks involved in disease and 
carcinogenesis has significantly advanced our knowledge of dis-
ease mechanisms and cancer initiation. These networks provide a 
global picture of protein-protein interactions, pathway-pathway in-
teractions, and the significant functions of each pathway and sub-
network group.87 Protein signaling network alterations, as part of a 
multi-step model of carcinogenesis, result from genetic, epigenet-
ic, transcriptomics, etc. For example, PPA allows digitalized pro-
tein expression to be combined with genomic data to create a more 
comprehensive multi-dimensional signaling network of diseases.8 
This network can be further integrated with existing knowledge, 
such as epidemiological data and digital pathology. A proteomic 
network, including large-scale PPI discoveries, will thus bridge 
the gap between genomics and biological functions, refining or 
reshaping our understanding of diseases.88,89 Furthermore, the en-
tire network has great potential to investigate the functions and 
relationships of proteins and metabolites that reflect the disease’s 
hallmarks, and to understand the strength of each group of PPIs, 
enabling the discovery of driver proteins or driver pathways.90,91 
The single protein expression with the most statistical differences 
is not necessarily the protein that affects biological functions the 
most in the network, nor are they the driver proteins that affect the 
entire network changes or the independent factors that affect dis-
ease progress. Therefore, biostatistical models and artificial intelli-
gence can recombine all of the biomarkers and optimize them into 
a panel,89 providing higher specificity than single-protein assays 
to meet different clinical needs, such as early diagnosis, prognosis 
prediction, and targeted treatment. This enables truly personalized 
medicine because each biomarker contributes differently to each 
clinical setting.

Discovery of new proteins
Unlike immunoassays, MS-based methods do not require the 
development of high-affinity antibodies specific to each protein 
epitope. They allow the simultaneous sequencing of hundreds of 
proteins in a wide variety of biological matrices, including fresh 
cells, frozen tissues, and formalin-fixed paraffin-embedded tis-
sues.92,93 MS-based methods can discover unknown proteins 
by powerful searching against a protein sequence database and 
quantifying them in a complex compound with high sensitivity, 
which is the cornerstone of identifying biomarkers and exploring 
the proteomics network.18,19 Moreover, various types of chemical 
groups in the peptide structure, such as phosphate groups involved 
in PTMs, can be captured and mapped back to protein sequences 
to infer the expressed proteins.94,95 Increasingly popular and im-
proving MS technology makes protein discovery easier, resulting 
in more comprehensive proteome coverage for various organisms 
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and generating a wealth of information stored in databases and bio-
informatics repositories.

Multi-omics
The complex signaling pathway mechanisms that trigger onco-
genesis or disease are not dependent on any single factor or only 
on the proteomic level but instead on the comprehensive effects 
from genomic and transcriptomic to proteomic alterations. Any 
individual protein is regulated by PPIs, mRNA, and DNA, work-
ing cooperatively in intricate signaling networks.87,89,96 Moreover, 
protein levels cannot be directly predicted by mRNA abundance, 
and protein dynamics are also dependent on other factors such as 
epigenetic and transcriptional regulation, which work together to 
alter protein levels, abnormal structural conformation, and impair 
function. Therefore, a multi-omics approach is required to charac-
terize the complex pathophysiology of oncogenesis and explore 
and reshape the mechanisms of pathogenesis at the molecular 
level.97–99 Integration of data across -omics areas is promising be-
cause it provides a comprehensive view of genomic mutations and 
transcriptional abnormalities, promoting basic research on cells 
and animals. Thus, an exciting term and field, namely proteog-
enomics, has been developed.100,101 For example, Cao et al.102 con-
ducted a comprehensive proteogenomic study on 50,000 MS runs 
of more than 900 projects. Among the 170,529 identified novel 
peptides, only about 1/30 (6,048) passed their strictest standard, 
which included being identified in more than two MS runs, more 
than one PRIDE project, and other criteria.

Currently, the diagnosis, evaluation, and treatment of most can-
cers are based on limited protein biomarkers or mutations com-
bined with clinical presentation or characteristics. The integration 
of “omics” data can serve as the cornerstone of modern medicine 
to identify a new panel of biomarkers at the molecular level.103 
These profiles, generated by the statistical models of multi-omics 
data, can ultimately serve as risk factors for disease, diagnostic as-

says for early detection, therapeutic markers for personalized treat-
ment, and many other applications in medicine. A single candi-
date, whether protein, gene, or clinicopathological characteristics, 
is often insufficient or ineffective in providing a comprehensive 
evaluation due to the complexity of human tumors and carcino-
genesis.104,105 Furthermore, as accumulating patient specimens 
undergo multi-omics analysis, a larger sample size with a more di-
verse population will allow the identification of additional low-fre-
quency driver markers and mutations, especially in rare diseases.

Future directions
The clinical applications of high-throughput proteomics are still 
limited. Therefore, it is crucial to develop a roadmap for the future. 
We here recommend a roadmap focusing on single-cell biology, in-
dividualized proteomics, digital pathology, pathology informatics, 
deep learning modeling, and new proteomic technologies (Fig. 3).

Proteomics based single cell biology and its clinical applications
Single-cell mass cytometry is increasingly applied in various bio-
medical fields as the vast heterogeneity between cells of the same 
tissue is gradually recognized in medicine.106–109 This technology 
will likely help create a new division of modern biology, termed 
single-cell proteomics, providing unique biological insights at the 
single-cell level.110 For example, protein extraction-based prot-
eomics techniques, such as Western blot or PPA, are challenging 
to identify whether the target protein is highly expressed in a small 
portion of cells or weakly expressed in most cells. A sufficiently 
large population of single cells can be studied as a time series of 
“snapshots” to recreate a timeline of dynamic biological processes 
of disease. Next-generation sequencing, as the ultra-high-through-
put transcriptome analysis, has tremendously improved sensitiv-
ity and increased capacity in genomics, allowing the identifica-
tion of numerous new genetic variables in rare cell populations.25 

Fig. 3. The roadmap toward the future includes the six major directions. The figure was generated using a modified template of Slidesgo (https://slidesgo.
com/).
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Single-cell proteomics can similarly provide maximal information 
to uncover the uniqueness of each cell in proteomics and has been 
recently applied to multiple myeloma, chimeric antigen receptor T 
cell therapy, and ovarian cancers.111–113

Li et al.114 described a nanoliter-scale oil-air-droplet chip for 
multistep complex sample pretreatment and injection for single-
cell proteomic analysis in the shotgun mode, identifying 355 pro-
teins at the single-cell level (mouse oocyte). Zhu et al.115 devel-
oped the nanoPOTS (nanodroplet processing in one pot for trace 
samples) platform, which can identify over 3,000 proteins from 
as few as 10 cells using the Match Between Runs algorithm of 
MaxQuant. They demonstrated the quantification of 2,400 pro-
teins from a single human pancreatic islet within sections using 
this system. Ctortecka et al.116 further developed the proteoCHIP 
for preparing single-cell proteomics samples and can detect 2,000 
proteins per TMT10-plex in single cells that were 170 multiplexed 
across various human cell types. Krieg et al.117 used high-dimen-
sional single-cell mass cytometry for an in-depth characterization 
of immune cell subsets in the peripheral blood of patients with 
stage IV melanoma to predict responses to anti-PD-1 immunother-
apy. Various new mass-based cytometry technologies significantly 
promote high-dimensional proteomics of single-cells,118 opening 
an exciting field to understand the complicated relationship be-
tween tumor cells and the environment and bringing higher clinical 
value for precision medicine.

Individualized proteomics
Polymorphisms, as individual modifiers of distinct genetic traits, 
widely influence the genome-based global arrangement of prot-
eomics, resulting in a unique proteomic signature for each indi-
vidual. Moreover, the structure and expression of the proteomic 
network vary in functional efficiency, known as “network poly-
morphisms”.119,120 Furthermore, individual variations lead to dif-
ferent biochemical and physiological baselines. Various modifiable 
factors, such as smoking, stress, obesity, and nutrition, accumu-
late in each individual with aging, shaping their unique genome, 
epigenome, and proteome together to contribute to disease devel-
opment.121 Therefore, assessing and monitoring an individual’s 
proteotype of oncogenic proteomic profiles will contribute to the 
evolution and expansion of individualized precision medicine, en-
suring that the right intervention, including diagnosis or treatment, 
is provided to the right person at the right time.26,119

Pathology informatics and digital pathology
Pathology informatics and digital pathology have emerged in re-
cent years with the rapid development of imaging and computa-
tional technology. They enable us to perform more clinical tasks in 
a shorter time and generate a large amount of medical data. Novel 
sources of data from electronic medical records, pathology images, 
and bio-information,122 recorded by wearable personal trackers 
(e.g., heart rate, activity, sleep, weight), along with multi-omics 
data, are incorporated into a comprehensive dataset, providing a 
broader view of disease. No single analytical domain holds the 
keys to all aspects of disease development, diagnosis, and treat-
ments.37,92,123 These detailed multi-dimensional explorations en-
able proteomics to play a significant role in the near future. The 
new multi-dimensional data resources provide a new foundation to 
generate more comprehensive proteomics biomarkers or panels for 
modern precision medicine. In turn, proteomics in this integrated 
multidisciplinary context can provide robust information to rethink 
and uncover the pathogenesis or specific patterns during the course 
of disease.

Deep learning
Deep learning, a subdiscipline within artificial intelligence and 
ML, focuses on algorithms that enable computers to learn to solve 
problems from existing data (training data).124 With its powerful 
computing and learning capabilities, deep learning can handle 
complex situations far beyond what the human brain alone can ac-
complish.125 It is particularly well-suited for processing massive 
(big) data with strong internal correlations from high-throughput 
multi-omics, assisting in diagnosis.126 Deep learning can acceler-
ate the statistical analysis and data visualization of existing pro-
teomics methods. For example, MS data are analyzed by peaks, 
that represent ions with a specific mass-to-charge ratio and can be 
biomarkers due to their similarity in the massive sequence data-
base, without determining which peptides or proteins are actually 
present.127 During this process, deep learning can be a powerful 
tool to identify biomarkers with higher accuracy.89,128,129 It allows 
us to explore large, comprehensive datasets combining data from 
multi-omics.130

Although multiple ML applications have been used to assist 
with proteomic data analysis, there remains substantial room for 
improvement.131 Traditional data analysis is based on digital ma-
trices converted from raw image results through multiple steps. 
For example, the size and density of each band from the antibody-
antigen reaction, generated by a protein pathway array, need to be 
manually converted to numeric data. This multi-step manual pro-
cessing can cause various systematic errors and make data difficult 
to merge. Convolutional neural networks and recurrent neural net-
works, types of deep learning/neural network-based multilayer ar-
tificial neural networks, are particularly useful for image analysis. 
They allow algorithms and statistical models to be built directly on 
the original image results rather than manually converted digital 
data. This approach may significantly improve the accuracy and 
efficiency of proteomics data analysis and increase the availability 
of high-quality public data resources.74,132,133

New proteomic technology
New proteomic technologies are rapidly developing and currently 
include DIA MS, nanopore-based proteomics, Python-based high-
efficiency data processing packages, 4-D proteomics, and second-
ary ion MS. For example, the SWATH-MS system, a type of DIA 
MS, systematically fragments and measures all ionized peptides 
within a predefined mass range, resulting in fewer biases and bet-
ter consistency than using the window of precursor isolations.134 In 
SWATH-MS measurements, peptide-centric scoring is often used 
and requires a thorough understanding of the peptide’s chromato-
graphic and mass spectrometric characteristics.134 Based on a con-
ceptually novel MS machine,135 an ultra-fast label-free DIA MS 
(named narrow-window DIA MS) was recently proposed, combin-
ing high-resolution MS1 scans and parallel tandem MS/MS scans 
of ∼200 Hz, delivering high sensitivity, specificity, and speed.136 
Nanopore, known for its low cost and high sensitivity in DNA/
RNA sequencing, may also be applied to label-free proteomics.137 
A Python-based package (AlphaPept) was developed to efficiently 
process large high-resolution MS datasets using both central pro-
cessing unit and graphics processing unit.138 The introduction of 
4-D proteomics, with the fourth dimension of ion mobility (sys-
tem), expands the depth of proteomics and has been coupled with 
DIA MS.139–142 Secondary ion MS involves the detection and 
mass-to-charge ratio analysis of secondary ions generated when 
sample surfaces are bombarded with energetic ions,143 offering 
very granular surface chemical data and sub-monolayer sensitivity.

It is noteworthy that these new proteomic technologies can be 
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integrated to generate synergistic outcomes. For example, 4D-prot-
eomics combined with DIA MS reportedly improves detection sensi-
tivity.142 DIA MS was also used to explore single-cell proteomics.144

We must balance innovation and compliance when applying new 
proteomic technologies to clinical problems. Innovations in technol-
ogy will certainly shift the paradigm in clinical proteomics. How-
ever, without rigorous validation in multiple datasets and high-level 
clinical evidence, new technologies, including proteomics, must not 
be directly used for clinical care, even as a laboratory-developed 
test (LDT).145,146 Indeed, the College of American Pathologists has a 
policy requiring rigorous validation of LDTs, and the U.S. Food and 
Drug Administration is also likely to regulate LDTs.147

Conclusions
High-throughput proteomics is increasingly being applied to trans-
lational research, clinical practice, and public health. While others 
have elegantly reviewed advances in pancreatic cancer, soft tissue 
sarcomas, or medicine as a whole, we briefly summarize recent ad-
vances in the clinical applications of high-throughput proteomics 
in breast cancer, colorectal cancer, gastric cancer, bladder cancer, 
laryngeal squamous cell carcinoma, and COVID-19. Future appli-
cations of high-throughput proteomics will face challenges related 
to various protein properties, limitations of statistical modeling, 
and technical and logistical difficulties in data deposition, integra-
tion, and harmonization, as well as regulatory requirements for 
clinical validation and considerations. However, we are encour-
aged by the advantages of high-throughput proteomics, including 
novel global protein networks, the discovery of new proteins, and 
synergistic incorporation with other omic data. We look forward to 
future advances in high-throughput proteomics, such as single-cell 
proteomics and its clinical applications, individualized proteom-
ics, pathology informatics, digital pathology, and deep learning 
models for high-throughput proteomics. In our view, recent and 
future advances in high-throughput proteomics will in our view 
drastically shift the paradigms of translational research, clinical 
practice, and public health.
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